this **Webinar** is powered by

4 February 2025

12:00 pm - 1:00 pm | Riyadh 1:00 pm - 2:00 pm | Dubai 10:00 am - 11:00 pm | CET, Berlin

LCOE, ROI assessments for C&I solar sector in Saudi Arabia

Emiliano Bellini
News Director
pv magazine

Moneef Barakat

CEO

Solarabic

Edgard Abou Kheir
Technical Service Manager
JinkoSolar

Aseel Alsaadi
Technical Services Manager
JA Solar

Tarek Alzaaim

Business Development Manager

Trinasolar

JOIN OUR EVENT IN PERSON

REGISTER NOW

Early Bird price is closing soon!

SUNRISE ARABIA

CLEAN ENERGY CONFERENCE

Date

February 19, 2025

Place

Riyadh, Saudi Arabia

Get 50% discount

PROMO CODE:

WEBINAR25

Organized by:

pv magazine

Leading in the Mera of solar energy

C&I Solar Sector in Saudi Arabia Presenter: Tarek Alzaaim – BDM (MEA)

About Trinasolar

We are committed to leading the way in smart PV and energy storage solutions and facilitating the transformation of new power systems for a net-zero future. MISSION: "Solar Energy for All"

240 gw+

Cumulative module shipments By the end of September 2024

170 gw+

Cumulative 210mm module shipments by the end of December 2024

Silicon Wafer Capacity

120

2024 Module Capacity

Tracker Capacity

10 gw

105

2024 Cell Capacity

Top Performer Award for Outstanding Product Reliability and Performance

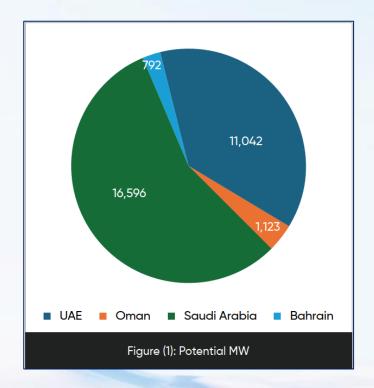
Bloomberg NEF

Tier 1

Energy Storage Manufacturer for four consecutive Quarters in 2024

TOP

Tier 1


PV Tracker Supplier and BESS Provider

Solar C&I Sector in KSA & 2030 Vision

- <u>Saudi Arabia's Vision 2030</u>: The Kingdom aims to diversify its energy mix, achieving 50% renewable energy by 2030 while targeting net-zero emissions by 2060.
- The Kingdom is targeting 130 GW of renewable energy capacity by 2030. RE account for 50% of its electricity production by 2030.
- Saudi Arabia dominates with over 50% of this potential, followed closely by the UAE, while Oman and Bahrain trail behind.
- Solar deployment potential up to ∼ 17 GW

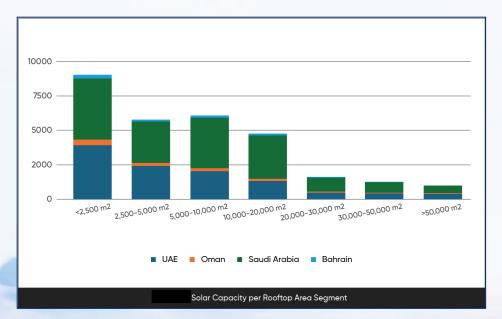
	Rooftop Area Segment							
Market	< 2,500 m2	2,500 - 5,000 m2	5,000 - 10,000 m2	10,000 - 20,000 m2	20,000 - 30,000 m2	30,000 - 50,000 m2	> 50,000 m2	Total
Dubai	1,201	1,024	915	680	273	176	165	4,434
Northern Emirates	1,360	874	678	336	98	107	52	3,505
Abu Dhabi	1,353	512	465	330	121	150	173	3,104
Total UAE	3,914	2,410	2,058	1,346	492	433	390	11,042
Oman	362	243	201	142	58	46	70	1,123
Saudi Arabia	4,478	2,974	3,672	3,141	1,049	752	530	16,596
Bahrain	263	168	168	101	39	45	7	792
TOTAL	9,018	5,794	6,099	4,730	1,639	1,277	997	29,553
Table (2): Total Solar Potential per Market (in MW)								

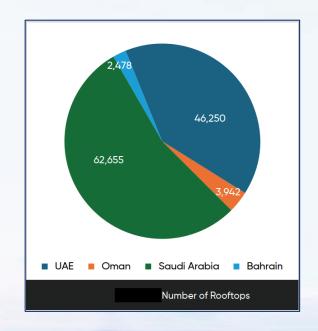
Source: MESIA Solar Outlook Report 2024

Planno

Solar C&I Sector in KSA – Opportunities

Resources


KSA receives an average of 8.9 daily sunshine hours and solar irradiation of 250 W/m², surpassing the global high-potential range of 100–200 W/m².


Government Support

- The Saudi Industrial Development Fund (SIDF) Mutjadeda program offer substantial financing for renewable energy projects, providing up to **USD 130 million** for residential and commercial ventures.
- The National Energy Services Company (Tarshid) Tenders Forecasted of several MWp in the pipeline for 2025.

Opportunities

The Kingdom accounts for over 50% of the total rooftop solar potential across GCC countries.

Source: MESIA Solar Outlook Report 2024

Solar C&I Sector in KSA – Challenges

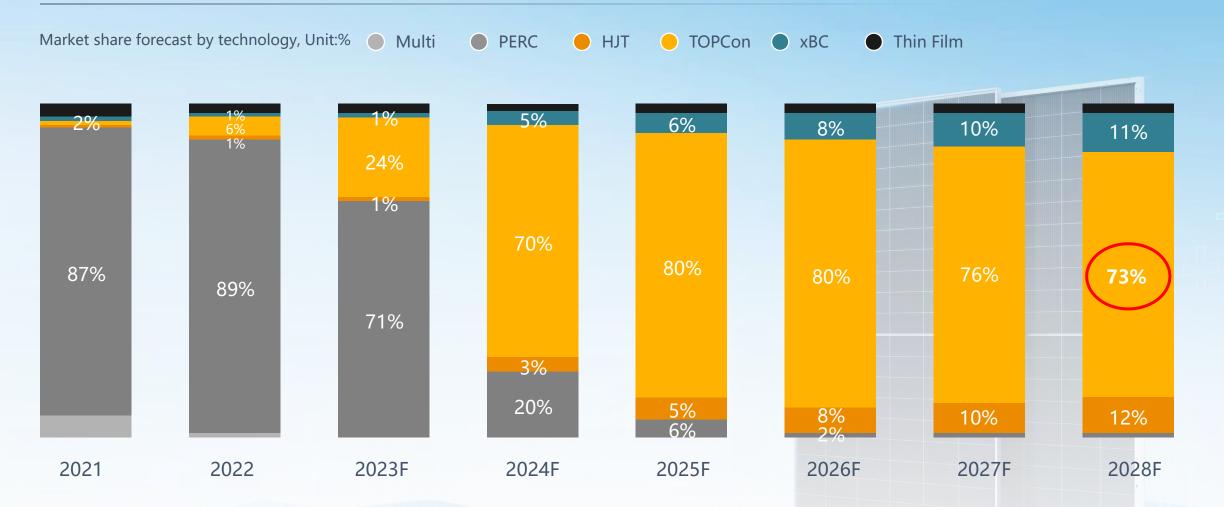
Regulatory Framework

 Navigating the regulatory landscape can be complex, with evolving policies and procedures that may pose challenges for project development – Project permitting & final connection stage.

Financing

 Securing financing for C&I solar projects can be challenging, especially for small and medium-sized enterprises, due to perceived risks and limited access to capital – presence of world class developers in KSA.

Grid Integration


 Integrating solar power into the existing grid infrastructure requires upgrades and investments to manage variability and ensure stability.

Grid Tariffs

 The low grid tariffs for residential and industrial sectors result in limited financial incentives for distributed generation (DG) selfconsumption – 0.18 SAR/kWh.

Third-party agency InfoLink predicts: TOPCon will be the mainstream technology in the next five years

By 2028, TOPCon will have a market share of ~73%

Vertex N i-TOPCon Advanced Technology

Trinasolar i-TOPCon Technology Roadmap >>>>

2015-2019

2020-2022

2023-2024

Advanced

i-TOPCon Ultra & Tandem

2025+

i-TOPCon

- In 2015, Base on Trina Solar's State Key Laboratory of Photovoltaic Science and Technology(PVST), i-TOPCon Lab was established.
- Innovative hydrogen passivation
- Wafer size 158.75mm × 158.75 mm
- Cell efficiency 23.07% (JET certificate) 24.58% (ISFH certificate) mass production efficiency 23.2%
- 500 MW mass production line

Yellow River hydropower in Qinghai

2019.12 250MW Tongchuan 'Top Runner' technical leader project

2019.6.30 250MW Changzhi 'Top Runner' technical leader project

• The first TOPCon Cell World Record in China, 23.5% (2019)

i-TOPCon

- Wafer size: 210mm × 210mm + 18BB
- 500 MW TOPCon pilot line
- Average production cell efficiency 24.5%
- Cell efficiency 25.15% (ISFH certificate)

Cell efficiency record

- 25.25% (2022/2, ISFH certificate)
- 25.42%(2022/3, ISFH certificate)
- 25.5%(2022/3, China National Metrology Institute certificate)

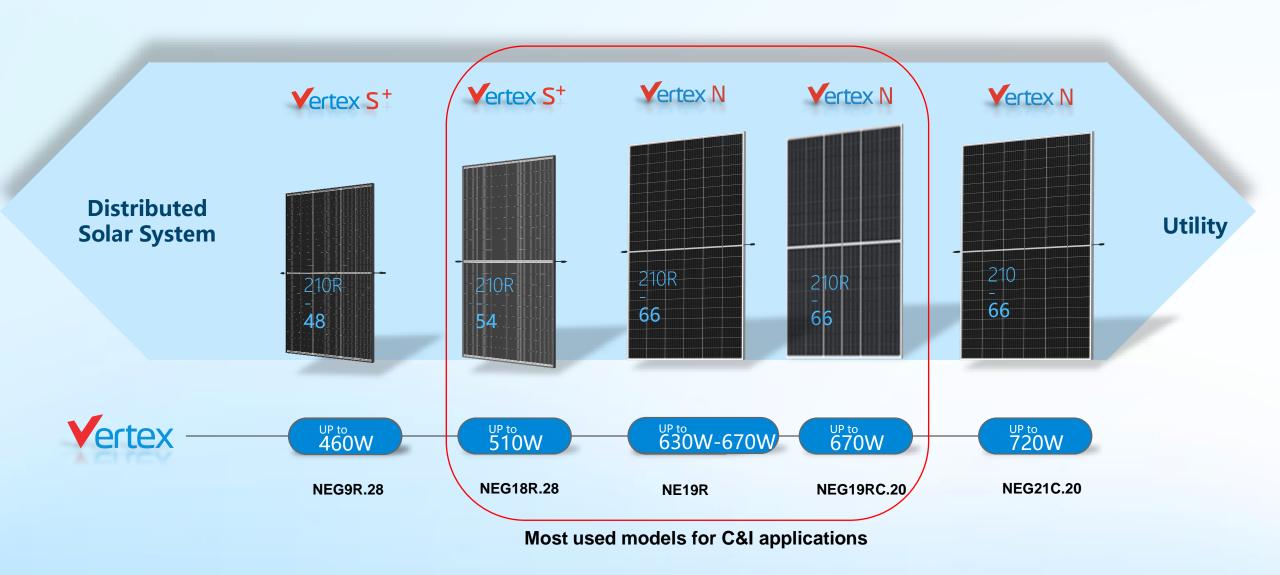
• Selective emitter, Rear planar reflector, Highly low rear TOPCon structure, Laser induced Firing, Edge Passivation Technology

Large wafer: 210,210R

i-TOPCon

- Lab efficiency reach 26% (German third-party certificates)
- Comprehensive product portfolio

- i-TOPCon + Full frontal passivation contact cell technology: Efficiency > 27%
- i-TOPCon + tandem cell Technology: Cell Efficiency >30%



2025 Product Outlook

210 Vertex series high power PV module can be used in all scenarios

510W Module: NEG18R.28

Maximum Power Output

up to **510W**

Maximum Module Efficiency

22.9%

- Dual Glass
- 15 years product warranty
- 30 years power warranty

(N type-Monofacial)

Solution for C&I and Residential

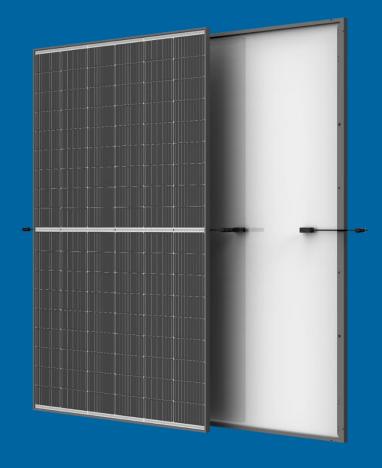
Mechanical Parameter

• Dimensions: 1961*1134*30mm

• Weight: 23.5kg

Electrical Parameter

• Open Circuit Voltage: 40.6V

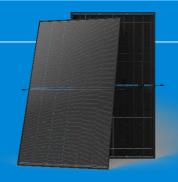

• Impp Current: 15.14A

- I_{mpp} < 15A, compatible with C&I inverters
- Small size module, easy installation

1134mm width, flexible array arrangement

500W+

Rooftop Portfolio


More Design Choices.

The 500W+ Rooftop Portfolio includes two black modules suited for residential and C&I designed to satisfy those looking for style and power.

RESIDENTIAL +C&I

Vertex S⁺ 500W+ Clear Black

NEG18RC.27

Trinasolar

NEG18R.25

N type Mono-Facial NE19R

Maximum Power Output

up to **630W**

Maximum Module Efficiency

23.3%

- BEST solution for C&I projects
- Suitable for Rooftop applications

with Backsheet

Solution for C&I

Electrical Parameter

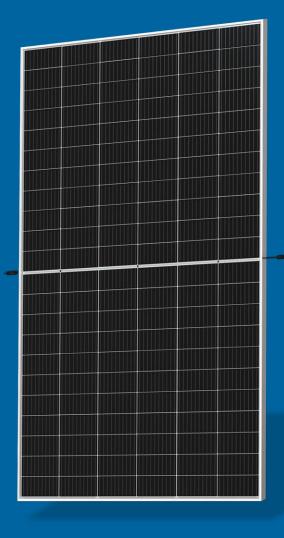
• Open Circuit Voltage: 50.3V

• Impp Current: 15.01A

Mechanical Parameter

• Dimensions: 2382*1134*30mm

• Weight: 27.9kg



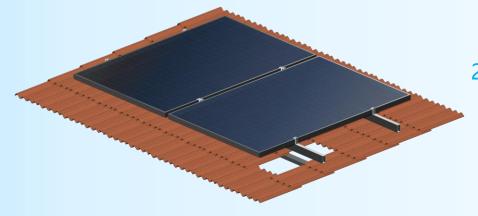
I_{mpp} ≤ 15A, compatible with C&I inverters

 Mono-facial design with an increased power

- Lighter weight, easier to handle and with reduced rooftop load
- Lower Voltage with a higher string power
- Standard Medium-Size Module

Vertex N Applicable for Residential and C&I Rooftops

Compatible with diverse installation methods Weight meeting C&I market requirement


Light Weight Single Glass with Backsheet 10.7kg/m²

Positive Load 5400Pa

Negative Load 2400Pa

4-point mounting on the short-side (with clamps)

+2400 Pa/-700Pa

Most Typical Mounting Structure

2 rails, Mounting rails run parallel to the short side frame (with screws or clamps)

+5400 Pa/-2400Pa

6-point mounting on the long-side (with clamps)

+2400 Pa/-1500Pa

Vertex N NEG19RC.20 (Ultra)

Maximum Power Output

Up to 670W

Maximum Module Efficiency

Up to **24.8**%

BOS Solution for C&I Applications

BEST compatibility

BEST BOS

Electrical Parameter

• Voc Voltage: 50.4V

• Impp Current: 16.86A

Mechanical Parameter

• Dimensions: 2382*1134*30 mm

• Weight: 33 kg

Vertex N TOPCon become the main technology

Project Information

Ground-mounted Scenario

Location Rio Verde, Brazil

AC capacity 125 MW

Type of inverter **String inverter**

1P tracker Mounting

Type of module **Bifacial module**

PV System Configuration

Reference 182-N

Item	Module type	NEG19RC.20	182N-72pcs	
	Module power	610W	580W	
Module	Module size (mm)	2382×1134×30	2278×1134×30	
	Open circuit voltage	49V	52.70V	
	Short circuit current	15.86 A	14.01 A	
Mounting	Installation	Trinatracker 1P new generation		
	Pitch	E-W 6.81m	E-W 6.510m	
Inverter	Inverter type	SUN2000-3	330KTL-H1	
	Inverter power (AC)	33	30	
	Inverter number	334	334	
	Module/string	31	30	
	String power	18,910W (+13%)	17,400W	
	Tracker configuration	1V93 Portrait	1V90 Portrait	
Layout	String/tracker	3	3	
	String number	6610	7184	
	Module number	204910	215520	
	GCR (%)	35%	35%	
Capacity	DC capacity (MW)	125	125	
	AC capacity (MW)	100	100	
	DC/AC ratio	1.25	1.25	

Vertex N Value assessment: BOS,LCOE assessment Rio verde, Brazil

Input Data and Assumptions					
Module type	NEG19RC.20-610	182N-72pcs-580			
Project capacity (MW)	125	125			
Global horizontal irradiation (kWh/m2/yr)	1,944	1,944			
PR Ratio	88.8%	88.5%			
BOS* (\$ /W)	0.4082	0.4123			
Other cost (\$/W)	0.2006	0.2006			
CAPEX (\$ /W)	0.6088	0.6130			
CAPEX Gap (%)	-0.7%	BL			
Designed life time (year)	30	30			
O &M cost (\$/kW/year)	21	21			
Annual escalation rate	4.8%	4.8%			
Debt fraction	30%	30%			
Tax rate	34%	34%			
LCOE (\$/kWh)	0.0352 (0.84%Saving)	0.0355			

The result shows that the Vertex NEG19RC.20-610W module performs better, with a saving of 0.7% in CAPEX and 0.84% in LCOE compared to 182N-580W.

^{*}includes only the components which make difference with different modules.

Reliability and Credibility Recognized by

Authoritative Third-parties

Indoor Reliability Test and Outdoor Power Gen Test

Visual & EL image inspection
Low irradiance and temperature behavior
LID & PID resistance
Outdoor performance test

BloombergNEF

TIER 1 PV Brand

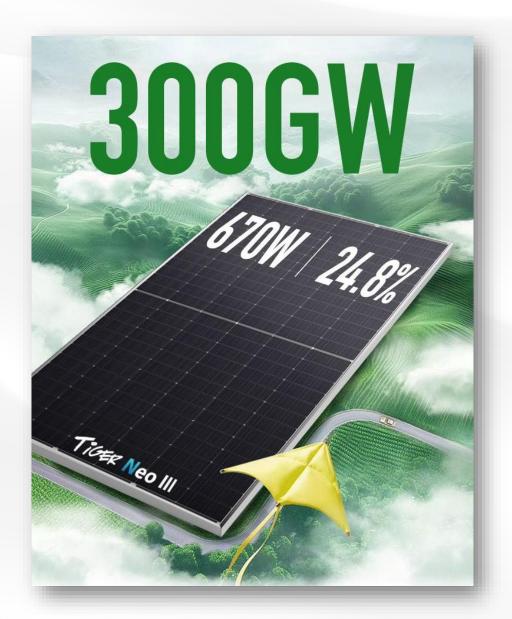
Bankability: Global TOP 5

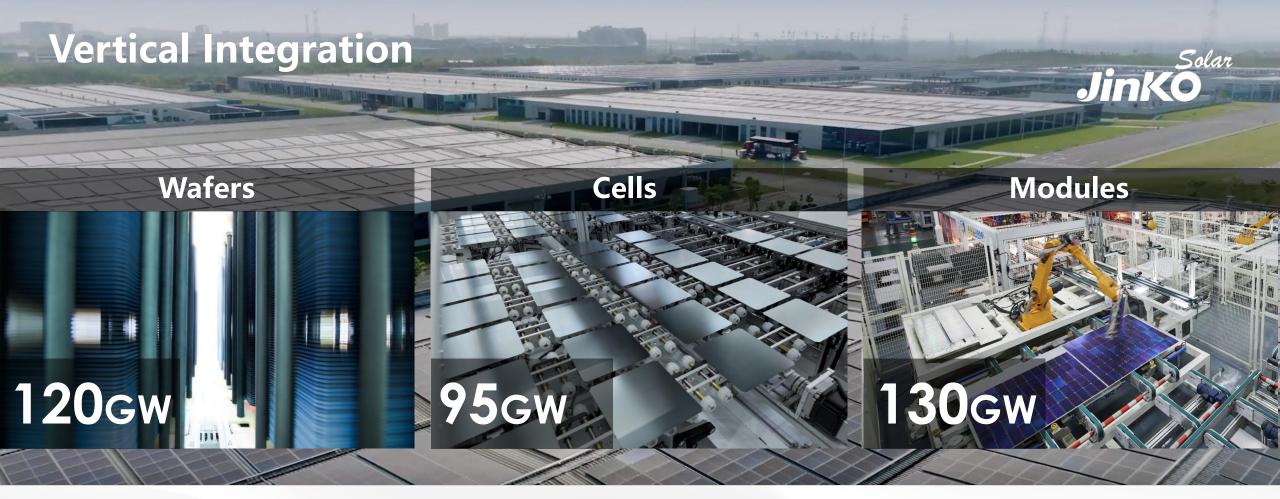
850 kWpDiesel – Solar PV Hybrid system

877 kWpRooftop On – Grid PV System for Residential Compound

2,056 kWpCar Parking on- grid System

509 kWp On-grid System


Content



Jinkosolar Introduction

2 Saudi Arabia Market Overview

3 Case Studies

300GW Delivered

15% Market Share 27
World records

100GW+
n-type module
Capacity

Global Manufacturing and Global R&D

Jinko Solar Co., Ltd.

R&D labs in Singapore and Australia.

Haining, Zhejiang Province, Shangrao, Jiangxi Province, Leshan, Sichuan Province, Xining, Malaysia and Vietnam, as well as joint

10+

Production

Sites

Overseas Sites

8

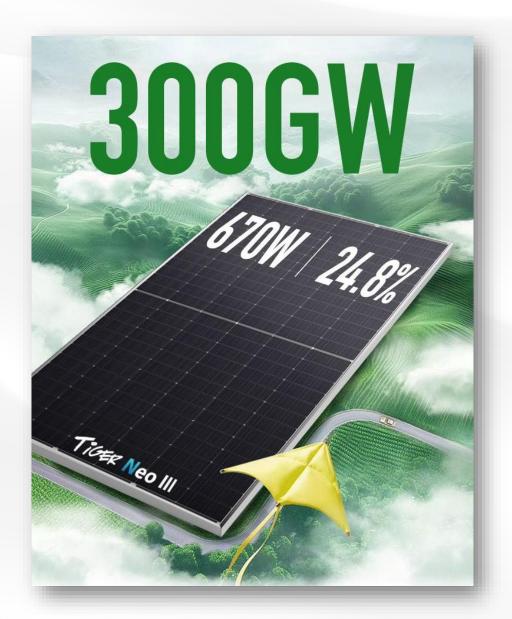
R&D Centers

4

Overseas R&D

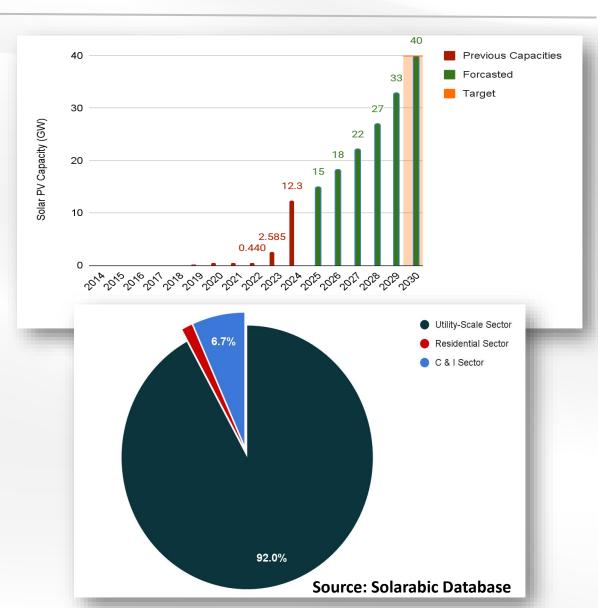
Jinko MEA Milestones

- Shipped +25GW to MEA region more than any other PV supplier
- Jinko modules deployed in +50 utility scale projects across MEA
- 60% Market share with +6.2GW Shipments to Saudi Arabia market in 2024
- 70% Market share in DG market across Saudi Arabia


Content

Jinkosolar Introduction

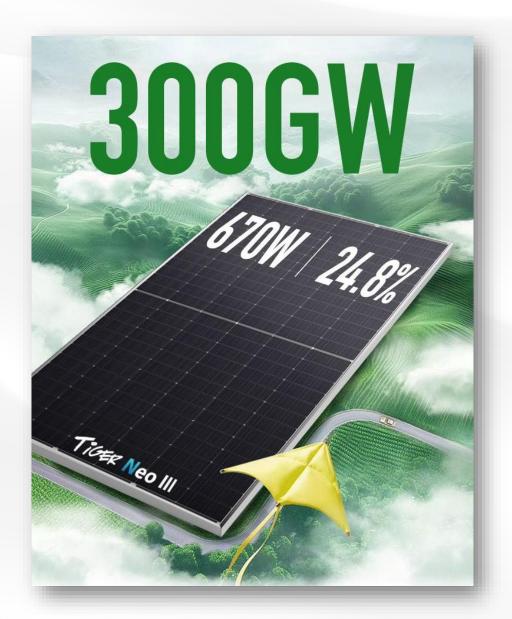
2 Saudi Arabia Market Overview


3 Case Studies

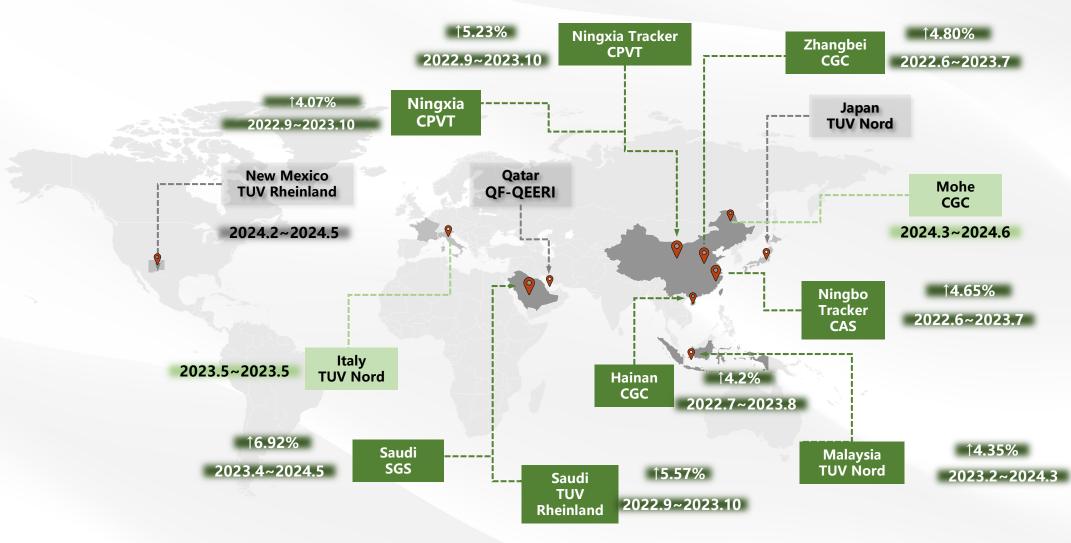
Saudi Arabia Solar distribution

- Saudi Arabia's Vision 2030 initiative seeks to generate 50% of its electricity from renewable sources, positioning solar PV as a central component.
- The forecast indicates a rapid growth trajectory, with capacity rising from 12.3 GW in 2024 to 40 GW by 2030.
- ➤ Utility/Mid Utility Sector: has been the main driver of solar energy adoption with off takers
- > Distributed Generation (DG) Sector:
 - ✓ C&I Sectors: starting to show more interest in solar energy
 - ✓ Residential Sector: still in its early stages.

World record LCOE


Content

Jinkosolar Introduction


2 Saudi Arabia Market Overview

3 Case Studies

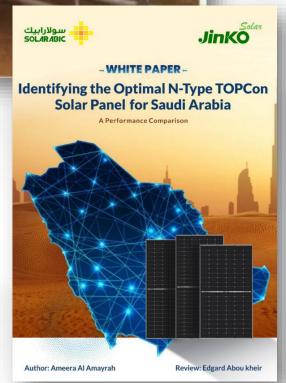
The Global Field Test Overview of TOPCon

Saudi Outdoor Field Test

Location

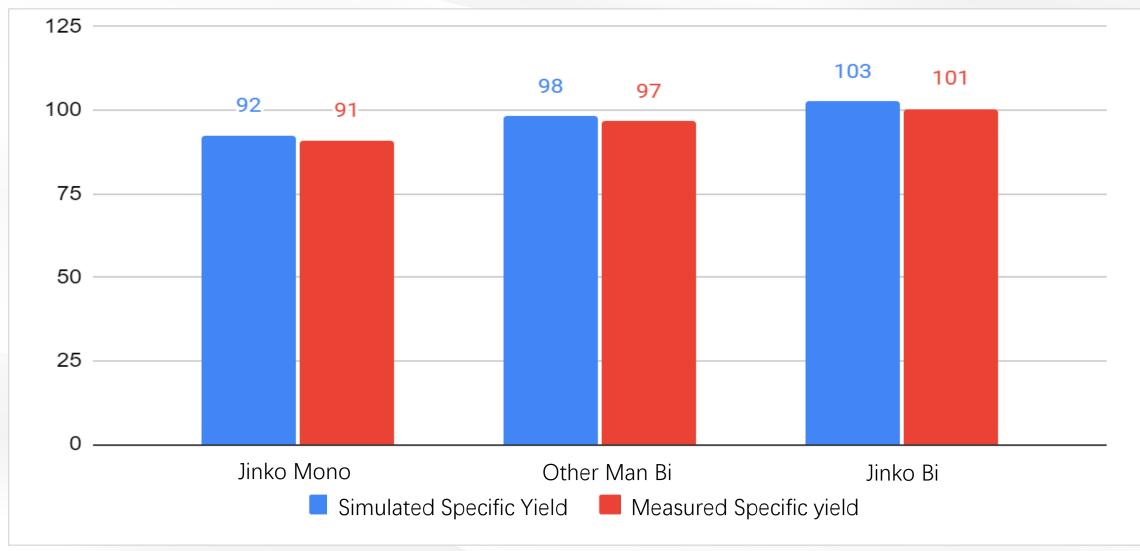
• Thual, Saudi Arabia

Climate Type


• Desert Climate: High Temperature, High Irradiance, High humidity

Testing Period

• June 2022 – Sept 2022 (4 months)



Model name	Wafer size	Bifacial factor	Type
Jinko Mono	182 x182mm	-	Mono facial
Other Manufacturer Bi	210x210mm	70±5%	Bi facial
Jinko Bi	182 x182mm	80±5%	Bi facial

Specific Yield results

Qatar Outdoor Field Test

MODULE TECHNOLOGIES

HJT / TOPCON

a Amayrah | Marah Mariam | Megna Raja

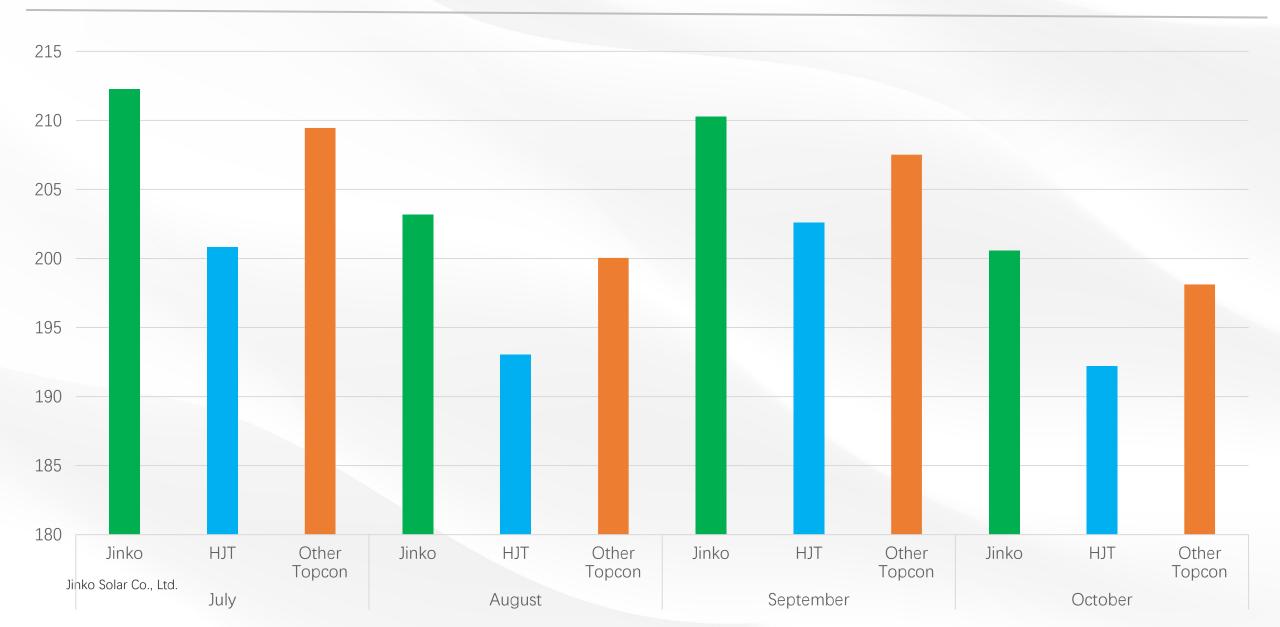
Location

• Doha/Qatar

Climate Type

• Desert Climate: High Temperature, High Irradiance, High humidity

Testing Period


• July 2024 – Oct 2024 (4 months)

Module Manufacturer	Technology	Power	Label Efficiency	Dimensions	Label Temp coeff
Jinko	N-type Topcon	575W	22.26%	2278x1134x30mm	-0.29%/°C
HJT Supplier	N-type HJT	690W	22.21%	2384x1303x35mm	-0.26%/°C
Other Topcon supplier	N-type Topcon	590W	22.30%	2333x1134x30mm	-0.30%/°C

Specific yield

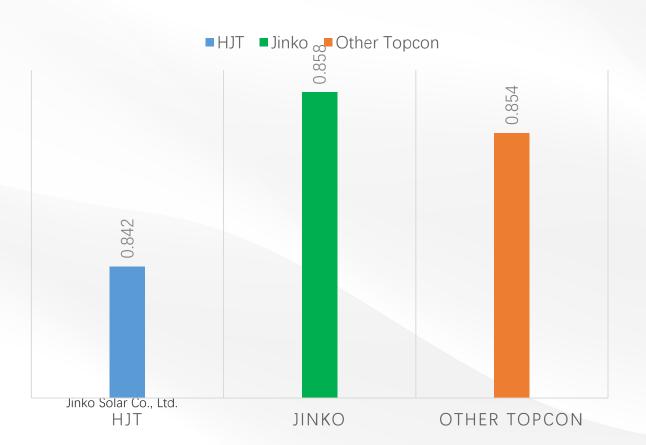
Perfomance at Specific Weather Conditions

Date & Time 13/07/2024 13:15PM Highest Temperature Recorded

47.8° C

Plane of Array Irradiation

890W/m²


Date & Time

01/08/2024 7:16AM Highest Humidity
Recorded

82%

Plane of Array Irradiation

212W/m²

THANK YOU

Edgard Abou Kheir Technical Services Manager – MENA Edgard.aboukheir@jinkosolar.com

Driving Growth in Saudi Commercial and Industrial Sector: JA Solar Solutions

Presenter : Aseel AlSaadi 04-Feb-2025

JASOLAR

PART

Optimal Energy Mix

- The Kingdom has committed to have 50% of its Power generated from Renewable Energy by 2030.
- Saudi Arabia's Solar market is showing strong signs of ramping up.
- The major regions in the market are Makkah, Riyadh, Madinah, Qassim, and Eastern Province, among others.
- Despite the immense potential and government support, there are several challenges in the Saudi solar power market.

Main Factors Driving the Solar Power Market in Saudi Arabia

- Saudi Arabia's key advantage in the solar energy sector is its abundant natural sunlight. With over 3,000 hours of sunshine annually, the country ranks among the sunniest places on Earth.
- The Saudi government has been actively promoting solar energy development through various policies.
- Saudi Arabia has pledged significant investments in renewable energy infrastructure.

JASOLAR

Annual shipment of PV modules reached **70GW** in 2024

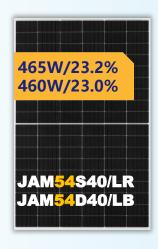

As of the end of 2024 Q3, the cumulative shipment of PV modules exceeded **246GW**

Product sales and service network spans **178** countries and regions

As of the end of 2024,

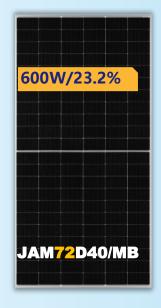
1,899 valid patents,
including 1,032 invention patents

100% Bankability Recognized by BNEF

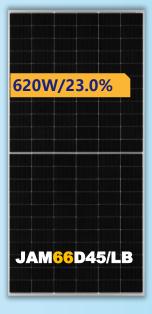


Industry Trend In C&I

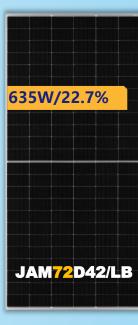
JA SOLAR



54c TOPCon


(1762×1134)

72c TOPCon

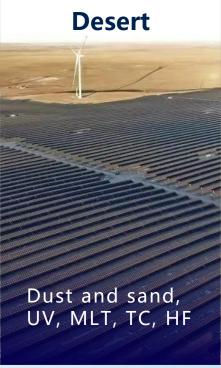

(2278×1134)

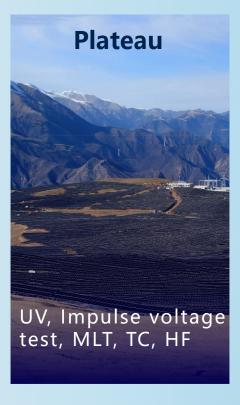
66c TOPCon

(2382×1134)

72c TOPCon

(2465×1134)


Residential


Residential, Commercial & Industrial, Utility-Scale

Customized modules for reliable performance under various climate conditions.

At JA Solar we have developed specialized applications for various environments.

How to Make This System Even Better?

A research-backed approach has demonstrated that optimizing key factors below can further enhance bifaciality, increasing gains by (2-10)% or even higher for rooftop applications.

- 1 Optimizing Surface Albedo (High-reflectivity surfaces boost bifacial gain!)
- 2 Adjusting Tilt Angles
- 3 Coverage Ratio %
- To further enhance system efficiency in C&I rooftop applications
- 1 A study has shown that optimizing the tilt angle—25° during dry periods and 45° during rainy periods—effectively reduces dust accumulation in **Jeddeh** specifically, enhancing overall energy performance.
- 2 Additionally, JA Solar's Anti Dust Products, featuring drainage holes, helps minimize dust buildup, ensuring sustained high efficiency.

Unlocking the Full Potential of C&I Solar with JA Solar Bifacial Modules

As part of Saudi Arabia's **Vision 2030** initiative, the C&I sector is rapidly adopting renewable energy solutions.

What are the key benefits of bifacial Modules in C&I Projects?

- Higher Energy Yield
- Lower LCOE
- Better Performance in Harsh Conditions
- Accelerate ROI

What role can bifacial solar play in achieving sustainability goals?

- Reduce Carbon Emissions
- Supporting circular economy & Longevity

Hamburg University of Applied Sciences

Faculty of Life Sciences

Performance Optimization of Bifacial Module PV Power Plants Based on Simulations and Measurements

Accurate modelling of the bifacial gain potential of rooftop solar photovoltaic systems

M. Ernst^{a,*}, X. Liu^a, C.-A. Asselineau^{a,b}, D. Chen^{c,d}, C. Huang^c, A. Lennon^{c,d}

The best tilt angle to improve PV module performance in world's worst soiling accumulation zone

Scientists have measured the performance of PV modules under strong soiling conditions in Saudi Arabia and have identified the most suitable tilt angles for improving power generation. They have also found that a key role is played by rain intensity, dust, sandstorms, and cloud cover.

^a The Australian National University, School of Engineering, Canberra, ACT 2600, Australia

^b IMDEA Energy, Av. Ramón de La Sagra, 3, 28935 Móstoles, Madrid, Spain

^c SunDrive Solar Pty Ltd, Kurnell, NSW, 2231, Australia

^d School of Photovoltaic and Renewable Energy Engineering, UNSW Sydney, Kensington 2052, Australia

JA Solar has Vertical Integration in Module Manufacture

Profound knowledge of

PV Technology

Raw materials

Wafer and cells

Modules and the entire system

Controlling of

The product quality

The deliveries

The production capacity

Worldwide Manufacturing

China

Vietnam

United States

Oman

Nadec Project Location :Saudi Arabia

Laila Project
location :Saudi Arabia.
Project : Ground-Mount
15 MWp

Location: Riyadh- Saudi Arabia Capacity: 368KWp Time: 2023

Model Name: JAM72D40 580 /MB

Harvest the Sunshine

Premium Cells, Premium Modules

www.jasolar.com

Emiliano Bellini
News Director
pv magazine

Moneef Barakat

CEO

Solarabic

Thank you for joining today!