

Racking And Trackers: Quality Issues in the Factory and Design Considerations

Jörg Althaus, Director, QA & Engineering Services Nicholas Hudson, Principal Engineer, Engineering Services

12 June 2024

Pillars of Solar Success Quality Assurance for PV Racking

Jörg Althaus, Director QA & Engineering Services

- 1. Core Components And Production Processes In PV Trackers
- 2. Typical Findings In Production
- 3. Case Studies
- 4. Inspection Methodology

Core Components Of a PV Tracker

*Some systems use linear or other actuators instead

Production Steps In Racking Manufacturing

1. Material Preparation

5. Welding

9. Milling

12 Most Common Processes

2. Forming

6. Laser/Plasma cutting

10. Painting

3. Punching

7. Extrusion

11. Bending

4. Drilling

8. Lathing

12. Galvanization

Due to product design and type specifications, racking production may include up to **50+ different technical processes**, of which each may require specific component customization and process modification.

The Motor

The motor unit of a PV tracker is made up of more than 60 components. Factories adopt different manufacturing processes and materials for each of these parts, resulting in added complexity.

The Motor

Most Common Processes

1. Machining

2. Wire Wrapping

3. Nitridation

4. Dimensioning

5. Immersion Painting

6. Coordinate Measuring

7. Assembling

8. Safety Testing

9. Noise Testing

10. RPM Testing

The Slew Drive

The slew drive is an intricate unit and serves as the joint between the motor and PV panels, but the slew drive manufacturing process is specialized, and any small defect can lead to severe rusting and systematic failure.

1. Cast housing

3. Gear

The Slew Drive

The slew drive is an intricate unit and serves as the joint between the motor and PV panels, but the slew drive manufacturing process is specialized, and any small defect can lead to severe rusting and systematic failure.

Back lash test

Gauging test

Salt spray test

Life-time test

Air tightness test

Jig inspection

Painting thickness inspection

Dimension inspection

Typical Findings In Production Critical Wet Storage Stain

• The weather resistance and mechanical properties of the torque tube will slowly decrease.

Typical Findings In Production Hole Pitch Deviation

• Even slight imprecisions can lead to systematic failure at installation.

Typical Findings in Production Excess Galvanization

• When excess zinc appears in a mounting or assembly hole, installation may fail, and workers can be under severe safety risk.

Typical Findings In Production Rusting / Corrosion

• Rusting decreases the mechanical strength of the system, possibly causing it to fail within few years.

Typical Findings In Production Weak Coating or Paint Thickness

• System stability is compromised upon unqualified surface treatment (e.g. insufficient hot dip galvanization).

Typical Findings In Production Welding Defect

Welding defects pose a major risk for the systems mechanical integrity.

Typical Findings In Production Metallographic Test Failure

- Metallographic tests can identify issues in the widely used casting material quality.
- Nodulizing grade and graphite size in ductile iron, as shown in the figure on the right, will lead to system failure and component damage.

Typical Findings In Production IP Protection Failure

- Improper IP (ingress protection) will accelerate wear and tear of the unit and cause internal oxidation.
- Moisture ingress will allow corrosion to happen and shorten the systems lifetime.

Typical Findings In Production Backlash Test

- Backlash test is performed to check tracking precision.
- Low tracking precision seriously affects the systems power production.

Typical Findings In Production Load / No Load Test

 Load / no-load test is performed to prevent slew drive failure which can cause fatal system failure.

Typical Findings In Production Hardness Test

 Hardness test is done to prevent failure of the slew drive and secure the lifetime of the system.

Typical Findings In Production Adhesive Test

- The adhesive test is performed to check the coating / painting durability.
- Failure will cause oxidation of the components and affect the functionality and lifetime.

Case Studies

Client	Undisclosed
Product type	Tracker
Component:	Post
Supplier /Factory	Undisclosed / China
Project size	190 MW
Project dates	December 2019
Found in	PSI
Issues	Dimension Deviation

Summary: Critical deviation was found on one out of five samples of posts. The hole pitch of post was offset leading to issues during installation on site, making it unable to install the actuator.

Action: The batch was rejected by CEA, avoiding unqualified material being shipped.

Effect: Save labor cost and project delays.

Case Studies

Client	Undisclosed
Product type	Tracker
Component:	Torque tube, actuator, control box
Supplier /Factory	Undisclosed / EU
Project size	8 MW
Project dates	August 2023
Found in	On-site inspection
Issues	Twisted tubes, leakage, rusting

Summary: Various critical issues were found on site leading to malfunction of the system. Torque tubes twisted, actuators leaking, structural surface rusting and motor failures. No initial QA was done.

Action: A findings report helped the client prepare a claim. Lab testing was suggested for further evidence.

Effect: Tracking failure, component breakdown, loss of production.

Quality Assurance for Racking Systems Inspection Methodology

Pre-Production	Production Monitoring	Pre-Shipment	Container Loading
 Factory Audit Factory certification (ISO, OHSAS, etc.) assessment Product certification (UL, CE, etc.) assessment Drawing / installation manual / bill of materials (BOM) review 	 Mill test certificate verification Raw material test report verification QA report verification Production process monitoring Equipment management monitoring Instrument calibration 	 Random sampling QC optimized criteria Visual inspection Dimension measurement Identification marking and traceability Uniformity test Packing verification 	 Proper packing Proper loading Container and seal information Correct products being shipped

CEA's **customized QA services** for various racking products are designed to cover the **entire production lifetime** and can be applied to any technical process to **minimize risk of failure**.

Summary

- Different designs of racking / tracking systems require different QA approach.
- Many different production processes and multiple factories involved.
- Complex processes require customized approach to QA.
- Many different process and material issues may cause shortened life-time.

Investment Confidence Through Design Engineering of Utility Scale PV Trackers

Nicholas Hudson, Principal Engineer, Engineering Services

Utility Scale Solar PV – Racking

Why Does Design Matter?

It is the first thing that goes in the ground

It needs to last the entire life of the system

It is the foundation, and the skeleton of the entire system

It is not modular, or plug-and-play

Elements of the Design Process

Major Phases

Site Selection & Economic Development	Detailed Design	Procurement	Construction
 High-Tech, Highly Automated Low Precision Economically Driven Dictated by Owner & Developer 	 Some Automation, CAD, Excel, PVSyst High Precision Code Driven Dictated by Engineer 	 Person-to-Person Driven by Market Dictated by EPC / Owner 	 Low-Tech, Labor Dependent Schedule Driven Dictated by Contractor

Effects of Design Changes

Benefits Of Front-loading Design Diligence

Design Cycle

At each stage, additional and refined inputs lead to improved design

Racking - Engineering Design Considerations

What are the specifications to consider?

	ENVIRONMENTAL	CODES	SITE	SYSTEM
Engineering Factors	 Temperature, Humidity, and Weather Proximity to Corrosive Environment Wetlands and Flood Zones 	 Design Codes Certification Requirements Material Spec Factor of Safety 	 Site Slope Tracking Algorithm Power Source Foundations Attachment 	 Accessibility for Maintenance Row & Block Arrangement Warranty & Maintenance Modules
What Specification to Look For	 Operating Temp Range Hail, Ice & Snow Stainless, Aluminum, Galvanized, Painted Min/Max Tube Clearance 	 IBC, ASCE, NEC UL, IEC ASTM, AISC, ACI Mechanical Load Capacity (Pa) Wind Stow 	 N-S & E-W Slope Tolerance Algorithm Features Self-Power, Battery Backup, Aux DC/AC Powered Alternate Foundations 	 Max Height Above Grade Min/Max Row Length Ground Coverage Ratio Structural & Mechanical Warranty Period(s) Module Compatibility List

The goal is not just to find any tracker that *can* work

The real challenge is, picking the *best combination* of equipment that will enhance the maximum performance and value from your site.

Interpreting A Datasheet

Which Factors Are Important To Compare?

STRUCTURAL & MECHANICAL	FEATURES/SPECIFICATIONS
Tracker Type	Horizontal single axis (1 module in portrait)
Ground Cover Ratio (GCR)	Site configurable. Typical: 28-45%
Linked Rows per Drive Motor	Up to 32
Drive Type	Rotating gear drive connected by drivelines (no driveline or bearing lubrication required)
Array Height	Torque Tube Elevation: 54" standard, adjustable (48" min height above grade)
Tracking Range of Motion	+/- 52°
Terrain Flexibility (N-S)	Up to 8.5° standard (up to 15° optional)
Terrain Flexibility (E-W)	Up to 25° combined angle
Wind Protection	Autonomous passive mechanical system No sensors or grid power required to activate
Max Wind Speed	140mph (225 km/h) per ASCE 7-10 (3-second gust), higher wind speeds possible depending on project conditions
Operating Temp Range	Standard: -4°F to 140°F (-20°C to 60°C) Optional: -40°F to 104°F (-40°C to 40°C)
Materials	Pre-galv steel, HDG steel and aluminum structural members, as required.
Codes and Standards	Certified to UL 3703 and IEC 62817
MODULE COMPATIBLITY	
c-Si Modules per Row (1500V DC)	Typical: 84-112 Maximum: 120
First Solar Modules per Row (1500V DC)	Series 6 Plus: 84-108 Series 7: 96-114
Modules Supported	Most commercially available, including framed or frameless crystalline, thin film, bifacial, and back rails
Module Attachment	Single fastener, high-speed mounting clamps with integrated grounding. Traditional rails for crystalline in landscape, custom racking for thin film and frameless crystalline and bifacial per manufacturer specs.

NTROL SYSTEM DETAILS	
aseline Solar Tracking Method	SANDIA's Ephemeris Model
ontrol Electronics	SmarTrack™ Controller Site Data Controller 6X Motor Controllers
ommunications	MODBUS TCP
acktracking	Yes (Optional terrain adaptive backtracking with SmarTrack)
ffuse Light Response	Optional with SmarTrack
ght-time Stow	Yes (configurable)
acking Accuracy	+/- 2°
otor Type	2HP, 3 Phase, 480V AC
TALLATION, OPERATION, AN	ID MAINTENANCE
nnual Power Consumption Wh per 1 MW)	Approximately 310 kWh per MW
Stamped Structural alculations & Drawings	Yes
n-site Training and System ommissioning	Yes
onnection	100% bolted connections. No drilling, cutting or welding on-site or in-field fabrication
cheduled Maintenance	None required
odule Cleaning Compatibility	Robotic, Tractor, Manual
arranty	10 years structural; 5 years drive and controls components

	Modules	Supporting Type	Most commercially available, including frameless
	Civil	Slope Tolerance(N-5) Slope Tolerance (E-W)	7% standard, can go to 15% special order 15% Tracker follows slope (Y/N) Yes
	Structural	Drive Type Piles per MW	Robust linear actuator stainless steel & aluminum 450/MW typical
		Operating Wind Load Snow Load Tracking Range(Std) Olio Sections	105mphrsul/130mphrpenium i) / 150mphrpenium 2) / 175mphrpenium 3) 5psf(Std) / 20psf(Premium 1) / 40psf(Premium 2) / 60 psf(Premium 3) 45 - 52 · TrackIng Range(Premium) 60 · 6235 galvapized seel (or HD) contion I roll formed standard
ENVIRONMENTAL		Pile Size (Interior) & (Exterior)	6" X 6" roll form shape or W6x7 or W6x9 or W6x15 wide flange 6." X 6" roll form shape or W6x7 or W6x9 or W6x15 wide flange 6.5" x 8" roll form hat or W6x15 or larger wide flange
FACTORS	Design	Module Configuration	S - / ft Hood Plain Allowance Up to 6 feet up in portrait for crystalline, FSLR Series 6, up landscape for Bifacial, 3 to 4 up landscape FSLR Series 4
		Modules per Table Module Attachment	Up to 340 ft. (forexample 10272ceff crystalline) SpeedClamp™ or Bolts available for bottom mount frame modules or clamps for glass on glass modules
CODE		Ground Coverage Ratio Rows per Drive Powering System	0.25 to 0.65 1 drive per tracker(table), distributed drive system Onboard solar module with battery or wireline power
FACTORS		Compliance Ground Clearance To Module Min / Max Ground to Top of Pier	UL 2703 / 3703 2 ft 51" typical / ground clearance + 51" + 9" adjustment range
		Backtracking Temperature Range FCC 3rd party design verified	Yes, although can be turned off as requested (Lefor FSLR module) -20° C + 48° C Compliant with FCC guidelines
SITE	Self Perform	Specialty Tools Required	No
FACTORS		Mechanical Installation Max offload for deliveries	Available As per customer requirement
TACTORO	Electrical	Tracking Method String Design	Time and location based algorithm Compatible with any string size
		Cable Supports	Free hole punching as per customer requirement
SYSTEM		Linear Actuator Motor Controller Box	24 volt DC Zigbee® wireless communications, 24v solar panel and battery or wireline power
FACTORS		Control System	Master to Node: Zigbee® wireless communications Master to SCADA/DAS: MODBUS communications 28 to 52 / MW depending on page wattage and
		# 01 MO(013	loading conditions (35 for typical conditions)
	ſ	Grounding Method	Tracker structure is part of grounding path per UL 2703
	l	UI Listed Assembly	UI 2703/UI 3703
	7	NEMA Ratings	IP66 stroke tube end /67 waterproof motor end (NEMA 3x/4 equivalent)
		# Weather Station	1 per 6 MW typical
		Monitoring System	Web portal interface available
			Compatible with all standard third party monitoring vendors
		Show & Flood Sensors	Move panels to optimum location for weather events
		Backup Power	Solar module and battery providing integrated backup - 3 days
	0 & M	Warranty	5 year drive & control, 10 year structural standard, 10 /20 also available
	Shipping	Max load	45,000 lbs. per truckload 5,000 lbs. maximum bundle size 2,900 lbs. or other maximum as requested by customers
		Shinning Containers or flatheds	Hat beds for structure, dry yans for hardware
		# Trucks per MWdc	2.76 typical

Beyond The Datasheets

What to look for in the module and tracker combination

	INTERNATIONAL CERTIFICATIONS	COMPATIBILITY TESTING	EXAMPLE CALCULATIONS	HAZARD MITIGATION STRATEGY
Look for these things	 UL 1703/2703/3703 IEC 62817, 61215 	 Compatibility Letter, countersigned by racking and module manufacturers Test records available showing test conditions and outcomes 	 Wind and Seismic Loads Snow Loads Factors of Safety Degree of Stress 	 Wind, Snow, Hail Stow Passive vs Active Stow Time to Stow Intervention Required to Stow Algorithm Performance
What to do if lacking?	 Request latest certifications for your region If unavailable, then combination may not be compatible 	 Request specific test records to support mechanical load certification Hire 3rd party testing lab to perform specific analyses If unavailable, consider certified loads as unconfirmed 	 If advanced wind tunnel study from 3rd party firm (RWDI, CPP) is not available, proceed with caution Request higher Factor of Safety (1.5 min) Request higher code Risk Category design 	 Usually, these options are not factors which can be easily changed Ensure the tracker hazard mitigation strategy aligns with your desired operations and company resources Ensure tracking features align with module technology

Module & Tracker Testing

How to ensure the assembly is up to the load

	ML [Static] Mechanical Load	DML Dynamic Mechanical Load	EL Electro- Luminescence	Current and Power Measurement
What it is Used For	 Overall static pressure from all hazards (wind, snow, ice, etc). Service deflections under loading Elastic / Yield performance 	 Repetitive loading cycles Flexibility and durability of elastic performance Accelerated life-cycling 	 Before/After identify invisible cell cracks Identify dead cells and activated diodes 	 Before/After to show power degradation Identify current leakage and potential Quantifies energy, economic, and safety impacts
What does it Look Like?	<image/>	<image/>		A. SPI-SUN SIMULATOR SOOSLY RLX SPI-SUN SIMULATOR SOOSLY RLX

Design Issues - Environmental

What can happen when it goes wrong?

Can Be

Caused By

Design Issues - Environmental

Design Issues - Loading

Design Issues - Site

- Insufficient Site Studies
- Insufficient Erosion
 Protection
- Insufficient Ground Cover & Vegetation
- Poor Grading Design
- Lack of Pre-Drilling

Design Issues – Hazard Mitigation

Design Issues – Hazard Mitigation

	Dy	ynamic Wind Failure
	•	Insufficient Code Study
Can Be Caused By	•	Incorrect BOM Specification
	٠	Poor or Slow Stowing Performance
	•	Lack of Warning
	٠	Backup Power Failure
	٠	Lack of advanced Wind Tunnel study

Summary - Design

- Early design decisions are the easiest to make and the most impactful to project success
- Engineering precision and detailed specifications are needed to ensure the best performance and durability
- When information is lacking, ask for more data, or obtain it yourself. Especially concerning the compatibility of modules and racking
- Failures are costly, but avoidable, if following best design practices.

Thank You

Company: Clean Energy Associates

Website: <u>www.cea3.com</u>

Email: info@cea3.com

The information herein has been prepared by Clean Energy Associates, LLC ("CEA") solely on a confidential basis and for the exclusive use of recipient, and should not be copied or otherwise distributed, in whole or in part, to any other person without the prior written consent of CEA. No representation, warranty or undertaking, express or implied, is made as to, and no reliance should be placed on, the fairness, accuracy, completeness or correctness of the information or the opinions contained herein. The information herein is under no circumstances intended to be construed as legal, business, investment or tax advice. Neither CEA or any of its affiliates, advisors or representatives will be liable (in negligence or otherwise), directly or indirectly, for any loss howsoever arising from or caused by the understanding and/or any use of this document.