this **Webinar** is powered by FTC Solar

15 September 2021

11:00 am – 12:00 pm | EST, New York 10:00 am – 11:00 am | Mexico, Colombia 5:00 pm – 6:00 pm | CEST, Berlin

Extreme damping – A new wind mitigation strategy for trackers

Marian Willuhn
Editor
pv magazine

Dr. Mark Preston

VP Engineering

FTC Solar

Matthew B. Gilliss
CEO & President
Engineered Power Solutions

pv magazine

webinars

Zachary Taylor
Technical Director
RWDI

Extreme Damping - A new wind mitigation strategy for trackers

Mark Preston, DPhil, VP Engineering, FTC Solar
Matt Gilliss, PE, CEO, EPS Engineered Power Solutions
Zachary Taylor, PhD, PEng, Technical Director & Assoc. Principal RWDI

The FTC Solar Advantage

Experience

2P Advantage

Value Engineering

Lowest LCOE

20+ Years of experience

As developers, EPCs, and asset owners

1.9 GW delivered

Highest 2P market share in the US

260%

YoY growth

46% Fewer piles Solution for challenging subsurfaces

Up to
1.6%
Higher density

Higher power for irregular sites

17.5% N-S slope tolerance Lower grading costs for undulating sites

Powered by our SunDAT software

Higher density

Site layout optimization

Less Earthworks

Grading optimization

DC collections design

201 MH/MW

Simplicity by design Industry leading install times

35%

Less DC cabling

99.9%

Operational availability

6.1%

Yield increase with SunPath

Tracker Stability (and Dynamic Loads) Challenges

Dynamic Behavior Is Very Complex

- Winds have both static and dynamic content that vary greatly in character over time
- Loads vary by location both along a row and within an array
- Site conditions (terrain, layout..) impact behavior significantly
- Loads and dynamic behavior are aeroelastic (depend on position under load – negative stiffness)
- There are complex mechanical behaviors that have significant impact which can't practically be included in traditional wind tunnel scale model testing (connection play, backlash, soil resistance, load dependent structural damping...)
- Severe wind events are rare in the field making validation of models a challenge

Design for Stability (and Other Dynamic Behavior

FTC's Approach

Wind tunnel testing

+

Dynamic modeling (Adams) with wind tunnel data as input

A team of experts (RWDI, EPS and others) for independent review

Are Stow-Flat Trackers Stable?

They Can Be If Done Right

- Adams simulation of Voyager+ tracker, under- and overdamped
- What's different from industry experience? Lots of damping, into uncharted territory...

RWDI Wind Tunnel Testing

Aerodynamic Stiffness and Damping

Tilt Angles Near Horizontal

Aerodynamic Instability

Torsional Divergence/Galloping

Torsional Flutter

Negative aerodynamic stiffness overcomes structural stiffness

Observed at low tilts

Negative aerodynamic damping overcomes structural damping

Observed at high tilts

Wind Induced Responses

Typical Response with Wind Speed

Damping

Model Scale Damper Design

- Remote control car dampers were the starting point
- Custom machined valve plates
- Variable oil weight
- Forced vibration testing to establish forcevelocity curves

Damping

Under Damped

- Inherent and/or supplemental damping
- Effectiveness depends on tilt angle

Over Damped

- Customized damping devices
- Strongly non-linear

Underdamped Performance

Response typical of torsional divergence/galloping

Overdamped Performance

Dynamic motion is suppressed with a heavily overdamped system

Summary

- Wind-induced vibrations are a serious design concern for single-axis solar trackers
- Stowing near horizontal typically requires significant stiffness to suppress aerodynamic instabilities
- Wind tunnel testing has been performed on FTC's system w/ and w/out external dampers
- A heavily overdamped system is shown to suppress dynamic motion

Applying RWDI Validation to Voyager+

Wind Dynamics

- Shielding effects
- Effective wind area
- Corner and edge vortices vs central zones
- Dynamic and aeroelastic wind effects

Wind Instability

- Trackers susceptible to wind dynamics
- Wind dynamics may govern over static loads
- Both static and dynamic wind loads should be considered

Aeroelastic Strategy

- Increased stiffness (more steel)
- Stowing at a higher angle
- Dampers
- More points of fixity (motors, locking dampers, etc.)

Voyager Addresses Aeroelastic Concerns

- Increased damper strength
- Matching deflection results of wind tunnel testing physical models with computer models
- Determination of torsional rotation and corresponding loads

Design for Stability (and Other Dynamic Behavior

FTC's Digital Tracker

- Wind tunnel testing is the best first step
 - Wind field and loads on tracker
 - Static and dynamic motion
 - Full character of dynamic behavior partly obscured by data reduction and instrumentation limits
 - Limited by what can be included in the scale model
- Dynamic modeling (Adams and similar)
 - Needs wind fields and loads as inputs
 - Requires correlation with wind tunnel and field measurements
 - Can include very complex and non-linear behavior (eg a damper or bearing with play)
 - No instrumentation limits everything can be "seen"
- A team of experts (RWDI, EPS and others) for independent review
- Combining the three gives a complete and accurate picture of tracker behavior

Adams Model

Things That Can Be Included With Adams

- Dampers with play
- Bearings with friction and play
- Structural damping with load dependence
- Slew drive with equation-based motion profile
- Flexible torque tubes with play in couplers
- Flexible rails and modules
- Flexible piles and soil resistance above point of fixity
- 14 wind splines distributed along the length of a row
- Moments and forces on each rail that vary with rail angle
- Wind and loads adjusted for different row types
- •

Adams Model

RWDI Synthesis

Adams Model

Typical Results

RWDI + Adams

Limit of Wind Tunnel

150 mph, typical LFM tracker

125 mph, typical LFM tracker

105 mph, typical LFM tracker

±5° dynamic rotation

±15° dynamic rotation

- Wind tunnel tests show Voyager+ is very stable for all practical designs
- Adams extends for elements not included in the wind tunnel scale model

Conclusion

- Damping is not new, but very large amounts were uncharted territory
- The Voyager stow-flat tracker is highly stable with very large amounts of damping
- This directly contradicts the current industry consensus about stow-flat trackers
- These conclusions are backed up with comprehensive wind tunnel and field testing plus state-of-the-art dynamic modeling

Download our wind mitigation white paper!

www.ftcsolar.com/resources

Questions?

FTC Solar integrates industry-leading engineering, software, and lean construction to lower the total cost of ownership and deploy reliable solar tracking solutions.

www.ftcsolar.com 1/6/2022