

ISE

KEEP COOL AND DISTRIBUTE STRESS

A recipe for improved performance

26 APRIL 2021

Questions to answer:

What determines degradation, output and lifetime?

Simon Meijer **COOLBACK** Company

Can COOLBACK[®] new module technology reduce degradation?

Alex Masolin **COOLBACK** Company

What about mechanical stress, new cells and larger modules?

Andreas Beinert Fraunhofer Institute for Solar Energy Systems ISE

How can we quantify the effects of using COOLBACK[®]?

Simon Meijer **COOLBACK** Company

COOLBAC

KEEP

COOL AND DISTRIBUTE **STRESS**

KEEP COOL AND DISTRIBUTE STRESS

KEEP COOL AND DISTRIBUTE STRESS

KEEP COOL AND DISTRIBUTE STRESS

DEGRADATION

TEMPERATURE is involved in almost every degradation mechanism

MOISTURE is involved in hydrolysis, corrosion and photo-degeneration

POWER LOSSES AND LIFETIME REDUCTION

Adapted from : I. Kaaya, et al., "Modeling Outdoor Service Lifetime Prediction of PV Modules: Effects of Combined Climatic Stressors on PV Module Power Degradation," in IEEE Journal of Photovoltaics, vol. 9, no. 4, pp. 1105-1112, July 2019

 $\langle \rangle \rangle$

KEEP COOL AND DISTRIBUTE STRESS

DEGRADATION

TEMPERATURE is involved in almost every degradation mechanism

MOISTURE is involved in hydrolys, corrosion and photo-degeneration

MECHANICAL FORCES cause of load stress and thermal stress degradation

POWER LOSSES AND LIFETIME REDUCTION

Adapted from : I. Kaaya, et al., "Modeling Outdoor Service Lifetime Prediction of PV Modules: Effects of Combined Climatic Stressors on PV Module Power Degradation," in IEEE Journal of Photovoltaics, vol. 9, no. 4, pp. 1105-1112, July 2019

1 DEGRADATION IN PV INDUSTRY

How the PV industry deals with degradation

DEGRADATION IS INTEGRATED IN THE PRODUCT RELIABILITY WITH:

- Degradation Rate Linear behavior, average 0,8%/year
- Power Output decline Range 0,2 - 2% /year

BUT SEVERAL FACTORS ARE NOT INCLUDED:

- Climate Higher degradation when hot & humid
- Cell Technology Higher vulnerability of high efficiency cells
- Module materials Longlasting materials are available, but more expensive
- Module type Lower Degradation Rate for glass-glass (~0,4%/year)

THIS RESULTS IN:

• Warranties

Normal 25 years on mono-facial backsheet-glass module and 30 years for glass-glass, excluding several "harsh" situations

1 POLL QUESTION 1

QUESTION

In order of magnitude, what is the ranking of the 3 dominant degradation precursors affecting module output & lifetime?

1 POLL QUESTION 1 - ANSWER

QUESTION

In order of magnitude, what is the ranking of the 3 dominant degradation precursors affecting module output & lifetime?

1 TEMPERATURE		2 HUMIDITY	3 MECHANICAL FORCE	
a.	1, 2, 3			
b.	2, 3, 1			
C.	3, 2, 1,			
d.	3, 1, 2			

ANSWER

a. 1, 2, 3

Precursors contributing to degradation:

Temperature	40%		
Humidity	30%		
Mechanical Force	20%		
Other	10%		

KEEP

COOL AND DISTRIBUTE STRESS

KEEP COOL AND DISTRIBUTE STRESS

COOLBACK[®] module technology increases output and reduces degradation:

Same costs, weight and size

COOLBACK[®] replaces original frame and backsheet during production

KEEP COOL AND DISTRIBUTE STRESS

Operating temperature: lower temperature increases output

Higher operating temperature

Lower operating temperature

2 TEMPERATURE EFFECTS (2)

KEEP COOL AND DISTRIBUTE STRESS

Standard framed PV modules suffer from low heat dissipation due to blocked airflows and non heat-transmitting materials.

2 TEMPERATURE EFFECTS (3)

KEEP COOL AND DISTRIBUTE STRESS

Standard framed PV modules suffer from low heat dissipation due to blocked airflows and non heat-transmitting materials.

COOLBACK[®] Profiles dramatically increase heat dissipation by means of higher natural convection cooling.

2 **O TEMPERATURE = O OUTPUT**

KEEP COOL AND DISTRIBUTE STRESS

Lower operating temperature increases energy yield

Representative daily average:

• Maximum module temperature gain: - 7°C

Annual average:

• Module operating temperature: - 7.3°C

The results were confirmed in several climates at third-party test sites in Spain, Italy, Qatar, UAE and Thailand, and also at PV module makers' test sites in China. Wind and irradiation, as major drivers, can cause slightly different outcomes.

2 **TEMPERATURE = OUTPUT**

KEEP COOL AND DISTRIBUTE STRESS

Lower operating temperature increases energy yield

Representative daily average:

- Maximum module temperature gain: 7°C
- Maximum power generation gain: + 12%

Annual average:

- Module operating temperature: 7.3°C
- Energy yield gain: + **3.0%**

The results were confirmed in several climates at third-party test sites in Spain, Italy, Qatar, UAE and Thailand, and also at PV module makers' test sites in China. Wind and irradiation, as major drivers, can cause slightly different outcomes.

17

KEEP COOL AND DISTRIBUTE STRESS

Ideal humidity barrier

MOISTURE PENETRATION - BACKSHEET

BACKSHEET TYPE	WVTR¹ (g/m ² *DAY)	5% PERFORMANCE DROP UNDER 85°C / 85% (damp heat)	
SUB-STANDARD (sub-tier 1)	> 4	< 1000 hours	
STANDARD	3	1000 hours	
(Tier-1 manufacturer)	2	< 3000 hours	
COOLBACK®	< 0,0001	> 4000 hours	

2 MATERIAL CHOICE EXTENDS LIFETIME

KEEP COOL AND DISTRIBUTE STRESS

Ideal humidity barrier

MOISTURE PENETRATION - BACKSHEET

BACKSHEET TYPE	WVTR¹ (g/m ² * DAY)	5% PERFORMANCE DROP UNDER 85°C / 85% (damp heat)	
SUB-STANDARD (sub-tier 1)	> 4	< 1000 hours	
STANDARD	3	1000 hours	
(Tier-1 manufacturer)	2	< 3000 hours	
COOLBACK®	< 0,0001	> 4000 hours	

Damp Heat Test - 4.000 hours

TEMPERATURE: 85°C | **RELATIVE HUMIDITY: 85%**

COOLBACK[®] provides outstanding performance and is as good as sealed glass-glass.

¹ WVTR = Water Vapor Transmission Rate

2 Koehl, M., Hoffmann, S., and Wiesmeier, S. (2017) Evaluation of damp-heat testing of photovoltaic modules. Prog. Photovolt: Res. Appl., 25: 175–183. doi: 10.1002/pip.2842.

2 FRAMELESS DESIGN EXTENDS LIFETIME

KEEP COOL AND DISTRIBUTE STRESS

Ideal humidity backsheet edge

MOISTURE PENETRATION - BACKSHEET EDGE

In humid climates and floating installations, frames cause water to stagnate. This is the primary cause of water penetration from the edges, especially where small sealing defects are present.

Frames affect humidity and soiling

2 NEW DESIGN LOWERS DEGRADATION!

KEEP COOL AND DISTRIBUTE STRESS

IMPACT OF THE COOLBACK® SMART STRUCTURE & BACKSHEET

FEM SIMULATION OF COOLBACK®

KEEP COOL AND DISTRIBUTE STRESS

FEM simulation method:

- Mounting Structure crucial for PV module mechanics
 - High deflection = high stress
- Digital prototyping by FEM model based on • previously published FEM model^[2]
- Simulation of deflection and stress in cells
 - Pull load (-2400 Pa)
 - Push load (2400 Pa or 5400 Pa)
- COOLBACK[®] comparison to conventional framed module of same dimension

[1] A. J. Beinert *et. al.*, Influence of photovoltaic module mounting systems on the thermo-mechanical stresses in www.ise.fraunhofer.de/module-fem solar cells by FEM modelling, EU PVSEC 2016, pp. 1833-1839 [2] A. J. Beinert et. al., Thermomechanical evaluation of new PV module designs by FEM simulations, pp EU PVSEC 2019, pp. 783-788

QUESTION

By how much does COOLBACK[®] improve bending (deflection) at the center of a module?

- a. 5%
- b. 20%
- c. 60%
- d. 70%

KEEP

COOL AND DISTRIBUTE STRESS

© Fraunhofer ISE www.ise.fraunhofer.de/module-fem

3 POLL QUESTION 2 - ANSWER

QUESTION

By how much does COOLBACK® improve bending (deflection) at the center of a module?

- a. 5%
- b. 20%
- c. 60%
- d. 70%

ANSWER

d. 70% less bending at the center with COOLBACK®

Preliminary results (prior to clamp optimization):

KEEP

COOL AND DISTRIBUTE STRESS

3 FEM SIMULATION OF COOLBACK®

KEEP COOL AND DISTRIBUTE STRESS

COOLBACK® effect:

- Full surface support by better clamp positioning, avoiding trampoline effect. Optimization based on simulation results.
- Lower deflection all over \rightarrow lower stress
- In comparison enormous reduction of cracks in normal size cells and modules expected

STRESS @ 5400 Pa PUSH

Cell fracture probability :

STATIC MECHANICAL IEC LOAD TEST 3

KEEP **COOL AND** DISTRIBUTE **STRESS**

< 2.0% POWER LOSS

www.ise.fraunhofer.de/module-fem

3 DYNAMIC MECHANICAL IEC LOAD TEST

KEEP COOL AND DISTRIBUTE STRESS

• 10 clamps

- 1000 cycles +1000 Pa / -1000 Pa
- Insulation test passed initially and after ML

3 INDUSTRY TREND: LARGER & HJT CELLS

KEEP COOL AND DISTRIBUTE STRESS

Trend: larger and new cell types lead to higher degradation at module level

	LARGER CELLS		+	NEW CELLS		EFFECTS
CELL SIZE	MODULE	FRAME		CELL TYPE		VULNERABILITIES:
 Larger cells Cell cutting	 Larger panel/ glass size 	 Heavier and larger frames 	Sensitive cells: New high efficiency cell technologies (i.e. HJT) require 10-		TEMPERATURE	
Thinner cells	• Plus 20%, to 2,20 meters in length and 1,2 meters in width	Higher material costs,Higher transport		efficiency cell technologies (i.e. HJT) require 10-		MOISTURE
ТО	 Extra weight and larger glass surface 	tra weight and ger glass rface costs 3g/ WV bar footprint ger	3g/m²*day of WVTR (Vapour barrier), but general backsheet	MECHANICAL STRESS		
	• More power per module			shows 2g/ m²*day		COSTS

3 IMPACT ON LARGER MODULES

The impact of increased module size

- More cells = higher deflection = higher stress
- Mounting on the long side is disadvantageous for bad aspect ratios

Frames must be stronger to handle the same load

How about COOLBACK®?

- 144 half-cells
- Comparison to conventional framed module of same dimension
- Optimized symmetric clamp setup (10 clamps)

symmetry

© Fraunhofer ISE www.ise.fraunhofer.de/module-fem

[3] A. J. Beinert *et. al.*, The Effect of Cell and Module Dimensions on Thermomechanical Stress in PV Modules, IEEE J. Photovoltaics, vol. 10, no. 1, 2020, pp. 70-77

COMPARISON ON THE 144 HALF-CELL 3

KEEP **COOL AND** DISTRIBUTE **STRESS**

Optimal support and substantially less stress is achieved by positioning clamps on module back, instead of on rim

COOLBACK®

www.ise.fraunhofer.de/module-fem

3 RESULTS OF SIMULATIONS AND IEC TESTS

KEEP COOL AND DISTRIBUTE STRESS

Conclusion:

- Successful digital prototyping by FEM simulations by Fraunhofer ISE
- PV modules with COOLBACK® passed mechanical-load test in accordance with IEC 61215-2:2016 at TestLab PV modules
- Test at maximum load :
 - $\circ~$ 16 mm deflection @ 7650 Pa push load
 - o 13 mm deflection @ -5500 Pa pull load
- COOLBACK[®] provides additional rigidity to the rear side of PV modules, reducing deflection and stress
- COOLBACK[®] modules are more robust against mechanical load

Cell fracture probability at 5400 Pa push load:

4 ENERGY & FINANCIAL GAIN CALCULATION

KEEP COOL AND DISTRIBUTE STRESS

PVsyst:

state-of-the-art analytical tool to calculate energy yield, LCOE and ROI

INPUT DATA CHANGE BY USING COOLBACK®

COOLER

STRONGER

Constant loss factor Uc 29 => 42,5 W/m²k Module average degradation 0,40 => 0,34%/year

4 SUBSTANTIALLY BETTER PERFORMANCE

KEEP COOL AND DISTRIBUTE STRESS

Determining factors of degradation, output and lifetime

How COOLBACK[®] new module technology reduces degradation

Mechanical stress, new cells and larger modules

The quantified effects of using COOLBACK[®]

COOLBACK 36

4 PHYSICS & FINANCE - COOLBACK® EFFECTS

What we've learned:

- In order of magnitude: temperature, humidity and mechanical forces cause PV module degradation and decreases output and lifetime
- PV industry is not very specific on degradation

How COOLBACK[®] new module technology reduces degradation

- Achievement of lower temperature, better moisture barrier for backsheet and the advantage of a frameless design for less soiling
- Mechanical forces better distributed

Mechanical stress, new cells and larger modules

- New cells request more expensive materials, but cracks and humidity problems increase
- COOLBACK[®] outperforms all issues with ease

The quantified effects of using COOLBACK[®]

- At same costs, a substantially higher output in energy and a longer lifetime is available
- Higher project ROI without higher investment

this Webinar is powered by Coolback

26 April 2021

11:00 am – 12:00 pm | CEST, Berlin 1:00 pm – 2:00 pm | GST, Dubai 5:00 pm – 6:00 pm | CST, Beijing/ Singapore

Mark Hutchins Editor pv magazine

Keep cool and distribute stress: A recipe for improved performance Q&A

Simon Meijer Founder & CEO COOLBACK Company

Andreas Beinert Researcher Fraunhofer Institute for Solar Energy Systems ISE