A group led by the Shenzhen Institute of Advanced Technology – part of the Chinese Academy of Sciences (CAS) – has fabricated a lithium-titanate battery with 110 milliamp hours per gram of specific capacity and a discharge voltage of 3 V, as well as a charge rate capability of up to 10 C and 100% capacity retention after 700 cycles. According to CAS, this places it among the best dual-ion batteries reported in literature.
The battery comprises a lithium titanate anode and a graphite cathode, but the researchers did not provide details of the electrolyte material.
Lithium titanate batteries present one of many pathways to eliminating rare, expensive and environmentally damaging materials, particularly cobalt and nickel, from the energy storage supply chain.
CAS noted that such batteries have thus far been limited by mismatching properties of the anode and cathode, and has sought to overcome these issues by using a 3D porous structure and implanting carbon nanofilms into their device. These were integrated via a range of novel processes, including molecule coupling, freeze drying, and pyrolysis.
The scientists describe their approach in “In-situ implanted carbon nanofilms into lithium titanate with 3D porous structure as fast kinetics anode for high-performance dual-ion battery“, which was recently published in Chemical Engineering. The group says that the porous structure dramatically enhanced the battery’s Li-ion diffusion coefficient, while the dual-ion configuration took advantage of faster kinetics to improve specific capacity.
CAS says that the device developed in Shenzhen is among the best-performing full batteries relying on the lithium-titanate chemistry. The academy plans to continue working in this area, as it shows great potential for highly safe and environmentally friendly energy storage applications.
This content is protected by copyright and may not be reused. If you want to cooperate with us and would like to reuse some of our content, please contact: editors@pv-magazine.com.
2 comments
By submitting this form you agree to pv magazine using your data for the purposes of publishing your comment.
Your personal data will only be disclosed or otherwise transmitted to third parties for the purposes of spam filtering or if this is necessary for technical maintenance of the website. Any other transfer to third parties will not take place unless this is justified on the basis of applicable data protection regulations or if pv magazine is legally obliged to do so.
You may revoke this consent at any time with effect for the future, in which case your personal data will be deleted immediately. Otherwise, your data will be deleted if pv magazine has processed your request or the purpose of data storage is fulfilled.
Further information on data privacy can be found in our Data Protection Policy.