The Austrian manufacturer of semiconductor production equipment EV Group (EVG) and Germany’s Fraunhofer Institute for Solar Energy Systems ISE have announced a new efficiency record for silicon-based multi-junction solar cells.
Researchers from both entities claim they have achieved an efficiency of 31.3% for this kind of cells, thus improving their previous record of 30.2%, which was announced last November.
The scientists have used a direct wafer bonding process to transfer a few micrometers of III-V semiconductor material to silicon. Through this process, which is implemented after plasma activation, the subcell surfaces are tied together in vacuum by applying pressure. As a result, Fraunhofer ISE explains, atoms on the surface of the III-V subcell form bonds with the silicon atoms, creating a monolithic device.
The cell consists of a sequence of three subcells made of gallium-indium-phosphide (GaInP), gallium-arsenide (GaAs)and silicon (Si), which are stacked together and span the absorption range of the sun’s spectrum. The III-V layers are epitaxially deposited on a GaAs substrate and then bonded to a silicon solar cell structure.
Although it is extremely complex in its inner working, the cell has a common external appearance. This, the researchers claim, gives hope that it can soon be integrated into a standard PV module using the simple front and rear contact seen in any ordinary silicon solar cell.
In early 2016, researchers at Australia’s University of New South Wales managed to reach a conversion efficiency of 34.5% using a 28 cm-squared four-junction mini-module that utilized a hybrid four-junction receiver to maximize the amount of electricity extracted from sunlight – a result that challenged perceptions on theoretical efficiency limits in solar.
This content is protected by copyright and may not be reused. If you want to cooperate with us and would like to reuse some of our content, please contact: editors@pv-magazine.com.
1 comment
By submitting this form you agree to pv magazine using your data for the purposes of publishing your comment.
Your personal data will only be disclosed or otherwise transmitted to third parties for the purposes of spam filtering or if this is necessary for technical maintenance of the website. Any other transfer to third parties will not take place unless this is justified on the basis of applicable data protection regulations or if pv magazine is legally obliged to do so.
You may revoke this consent at any time with effect for the future, in which case your personal data will be deleted immediately. Otherwise, your data will be deleted if pv magazine has processed your request or the purpose of data storage is fulfilled.
Further information on data privacy can be found in our Data Protection Policy.